Exercise 16

Find the inverse Laplace transform of the following:

$$
F(s)=\frac{1}{s\left(s^{2}+1\right)}-\frac{1}{s\left(s^{2}-1\right)}
$$

Solution

Before taking the inverse Laplace transform of $F(s)$, factor $1 / s$.

$$
F(s)=\frac{1}{s}\left(\frac{1}{s^{2}+1}-\frac{1}{s^{2}-1}\right)
$$

We will use the convolution theorem, which states

$$
\mathcal{L}\left\{\int_{0}^{x} f_{1}(x-t) f_{2}(t) d t\right\}=F_{1}(s) F_{2}(s) .
$$

In this case, $F_{1}(s)$ is $1 / s$ and $F_{2}(s)$ is the function in parentheses. Their inverse Laplace transforms are relatively easy to find.

$$
\begin{aligned}
F_{1}(s)=\frac{1}{s} & \rightarrow \mathcal{L}^{-1}\left\{F_{1}(s)\right\}=\mathcal{L}^{-1}\left\{\frac{1}{s}\right\}=1=f_{1}(x) \\
F_{2}(s)=\frac{1}{s^{2}+1}-\frac{1}{s^{2}-1} & \rightarrow \mathcal{L}^{-1}\left\{F_{2}(s)\right\}=\mathcal{L}^{-1}\left\{\frac{1}{s^{2}+1}-\frac{1}{s^{2}-1}\right\}=\sin x-\sinh x=f_{2}(x)
\end{aligned}
$$

By the convolution theorem then,

$$
\begin{aligned}
F(s) & =\mathcal{L}\left\{\int_{0}^{x}(\sin t-\sinh t) d t\right\} \\
& =\mathcal{L}\left\{\int_{0}^{x} \sin t d t-\int_{0}^{x} \sinh t d t\right\} \\
& =\mathcal{L}\left\{\left.(-\cos t)\right|_{0} ^{x}-\left.\cosh t\right|_{0} ^{x}\right\} \\
& =\mathcal{L}\{1-\cos x-\cosh x+1\} \\
& =\mathcal{L}\{2-\cos x-\cosh x\} .
\end{aligned}
$$

Finally, take the inverse Laplace transform of $F(s)$.

$$
\begin{aligned}
\mathcal{L}^{-1}\{F(s)\} & =\mathcal{L}^{-1}\{\mathcal{L}\{2-\cos x-\cosh x\}\} \\
& =2-\cos x-\cosh x
\end{aligned}
$$

